3.142 \(\int \frac{1}{(d+e x^2) (a+c x^4)} \, dx\)

Optimal. Leaf size=336 \[ -\frac{\sqrt [4]{c} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}+\frac{\sqrt [4]{c} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}-\frac{\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}+\frac{\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}+\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} \left (a e^2+c d^2\right )} \]

[Out]

(e^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*(c*d^2 + a*e^2)) - (c^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 -
(Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) + (c^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1
+ (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) - (c^(1/4)*(Sqrt[c]*d + Sqrt[a]*e)*Log[Sqr
t[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) + (c^(1/4)*(Sqrt[c]*d + S
qrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2))

________________________________________________________________________________________

Rubi [A]  time = 0.269766, antiderivative size = 336, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.421, Rules used = {1171, 205, 1168, 1162, 617, 204, 1165, 628} \[ -\frac{\sqrt [4]{c} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}+\frac{\sqrt [4]{c} \left (\sqrt{a} e+\sqrt{c} d\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}-\frac{\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}+\frac{\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )}+\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x^2)*(a + c*x^4)),x]

[Out]

(e^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*(c*d^2 + a*e^2)) - (c^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 -
(Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) + (c^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1
+ (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) - (c^(1/4)*(Sqrt[c]*d + Sqrt[a]*e)*Log[Sqr
t[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) + (c^(1/4)*(Sqrt[c]*d + S
qrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2))

Rule 1171

Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q/(a + c*x^
4), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IntegerQ[q]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx &=\int \left (\frac{e^2}{\left (c d^2+a e^2\right ) \left (d+e x^2\right )}+\frac{c \left (d-e x^2\right )}{\left (c d^2+a e^2\right ) \left (a+c x^4\right )}\right ) \, dx\\ &=\frac{c \int \frac{d-e x^2}{a+c x^4} \, dx}{c d^2+a e^2}+\frac{e^2 \int \frac{1}{d+e x^2} \, dx}{c d^2+a e^2}\\ &=\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} \left (c d^2+a e^2\right )}+\frac{\left (\frac{\sqrt{c} d}{\sqrt{a}}-e\right ) \int \frac{\sqrt{a} \sqrt{c}+c x^2}{a+c x^4} \, dx}{2 \left (c d^2+a e^2\right )}+\frac{\left (\frac{\sqrt{c} d}{\sqrt{a}}+e\right ) \int \frac{\sqrt{a} \sqrt{c}-c x^2}{a+c x^4} \, dx}{2 \left (c d^2+a e^2\right )}\\ &=\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} \left (c d^2+a e^2\right )}+\frac{\left (\frac{\sqrt{c} d}{\sqrt{a}}-e\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 \left (c d^2+a e^2\right )}+\frac{\left (\frac{\sqrt{c} d}{\sqrt{a}}-e\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 \left (c d^2+a e^2\right )}-\frac{\left (\sqrt [4]{c} \left (\sqrt{c} d+\sqrt{a} e\right )\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}-\frac{\left (\sqrt [4]{c} \left (\sqrt{c} d+\sqrt{a} e\right )\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}\\ &=\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} \left (c d^2+a e^2\right )}-\frac{\sqrt [4]{c} \left (\sqrt{c} d+\sqrt{a} e\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}+\frac{\sqrt [4]{c} \left (\sqrt{c} d+\sqrt{a} e\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}+\frac{\left (\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}-\frac{\left (\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}\\ &=\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} \left (c d^2+a e^2\right )}-\frac{\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}+\frac{\sqrt [4]{c} \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}-\frac{\sqrt [4]{c} \left (\sqrt{c} d+\sqrt{a} e\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}+\frac{\sqrt [4]{c} \left (\sqrt{c} d+\sqrt{a} e\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (c d^2+a e^2\right )}\\ \end{align*}

Mathematica [A]  time = 0.155439, size = 234, normalized size = 0.7 \[ \frac{8 a^{3/4} e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )+\sqrt{2} \sqrt [4]{c} \sqrt{d} \left (-\left (\sqrt{a} e+\sqrt{c} d\right ) \left (\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )-\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )\right )+\left (2 \sqrt{a} e-2 \sqrt{c} d\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt{c} d-\sqrt{a} e\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )\right )}{8 a^{3/4} \sqrt{d} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x^2)*(a + c*x^4)),x]

[Out]

(8*a^(3/4)*e^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + Sqrt[2]*c^(1/4)*Sqrt[d]*((-2*Sqrt[c]*d + 2*Sqrt[a]*e)*ArcTan[
1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] - (Sqrt[c
]*d + Sqrt[a]*e)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/
4)*x + Sqrt[c]*x^2])))/(8*a^(3/4)*Sqrt[d]*(c*d^2 + a*e^2))

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 363, normalized size = 1.1 \begin{align*}{\frac{cd\sqrt{2}}{ \left ( 8\,a{e}^{2}+8\,c{d}^{2} \right ) a}\sqrt [4]{{\frac{a}{c}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ) }+{\frac{cd\sqrt{2}}{ \left ( 4\,a{e}^{2}+4\,c{d}^{2} \right ) a}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ) }+{\frac{cd\sqrt{2}}{ \left ( 4\,a{e}^{2}+4\,c{d}^{2} \right ) a}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ) }-{\frac{e\sqrt{2}}{8\,a{e}^{2}+8\,c{d}^{2}}\ln \left ({ \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-{\frac{e\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-{\frac{e\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{{e}^{2}}{a{e}^{2}+c{d}^{2}}\arctan \left ({ex{\frac{1}{\sqrt{de}}}} \right ){\frac{1}{\sqrt{de}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x^2+d)/(c*x^4+a),x)

[Out]

1/8/(a*e^2+c*d^2)*c*d*(a/c)^(1/4)/a*2^(1/2)*ln((x^2+(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*x*2^(1
/2)+(a/c)^(1/2)))+1/4/(a*e^2+c*d^2)*c*d*(a/c)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/4/(a*e^2+c*d^2
)*c*d*(a/c)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)-1/8/(a*e^2+c*d^2)*e/(a/c)^(1/4)*2^(1/2)*ln((x^2-(a
/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2+(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2)))-1/4/(a*e^2+c*d^2)*e/(a/c)^(1/4)*2^(1
/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)-1/4/(a*e^2+c*d^2)*e/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)+e^
2/(a*e^2+c*d^2)/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(c*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 6.76989, size = 7792, normalized size = 23.19 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(c*x^4+a),x, algorithm="fricas")

[Out]

[-1/4*((c*d^2 + a*e^2)*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^
2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4
+ 2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(c^2*d^2 - a*c*e^2)*x + (a*c^2*d^3 - a^2*c*d*e^2 + (a^3*c^2*d^4*e + 2*a^4*c
*d^2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2
*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4
 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e
^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))) - (c*d^2 + a*e^2)*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2
 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4
 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(c^2*d^2 - a*c*e^2)*x - (a*c^2*d
^3 - a^2*c*d*e^2 + (a^3*c^2*d^4*e + 2*a^4*c*d^2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(
a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))*sqrt((2*c*d*e + (a*c^2*d^4
+ 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 +
6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))) + (c*d^2 + a*e^2)*s
qrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*
d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*
e^4))*log(-(c^2*d^2 - a*c*e^2)*x + (a*c^2*d^3 - a^2*c*d*e^2 - (a^3*c^2*d^4*e + 2*a^4*c*d^2*e^3 + a^5*e^5)*sqrt
(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e
^6 + a^7*e^8)))*sqrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2
*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2
*c*d^2*e^2 + a^3*e^4))) - (c*d^2 + a*e^2)*sqrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d
^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7
*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(c^2*d^2 - a*c*e^2)*x - (a*c^2*d^3 - a^2*c*d*e^2 - (a^3*
c^2*d^4*e + 2*a^4*c*d^2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*
d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))*sqrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*
e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^
6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))) - 2*e*sqrt(-e/d)*log((e*x^2 + 2*d*x*sqrt(-e
/d) - d)/(e*x^2 + d)))/(c*d^2 + a*e^2), 1/4*(4*e*sqrt(e/d)*arctan(x*sqrt(e/d)) - (c*d^2 + a*e^2)*sqrt((2*c*d*e
 + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*
c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(
c^2*d^2 - a*c*e^2)*x + (a*c^2*d^3 - a^2*c*d*e^2 + (a^3*c^2*d^4*e + 2*a^4*c*d^2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 -
 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8
)))*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3
*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 +
 a^3*e^4))) + (c*d^2 + a*e^2)*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2
*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c
^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(c^2*d^2 - a*c*e^2)*x - (a*c^2*d^3 - a^2*c*d*e^2 + (a^3*c^2*d^4*e +
2*a^4*c*d^2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*
a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(
c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6
+ a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))) - (c*d^2 + a*e^2)*sqrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*
d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*
d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(c^2*d^2 - a*c*e^2)*x + (
a*c^2*d^3 - a^2*c*d*e^2 - (a^3*c^2*d^4*e + 2*a^4*c*d^2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c
*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))*sqrt((2*c*d*e - (a*c
^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6
*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))) + (c*d^2 + a
*e^2)*sqrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a
^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2
 + a^3*e^4))*log(-(c^2*d^2 - a*c*e^2)*x - (a*c^2*d^3 - a^2*c*d*e^2 - (a^3*c^2*d^4*e + 2*a^4*c*d^2*e^3 + a^5*e^
5)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*
c*d^2*e^6 + a^7*e^8)))*sqrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^
2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4
+ 2*a^2*c*d^2*e^2 + a^3*e^4))))/(c*d^2 + a*e^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x**2+d)/(c*x**4+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.13057, size = 458, normalized size = 1.36 \begin{align*} \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac{3}{4}} e\right )} \log \left (x^{2} + \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} - \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac{3}{4}} e\right )} \log \left (x^{2} - \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} + \frac{\arctan \left (\frac{x e^{\frac{1}{2}}}{\sqrt{d}}\right ) e^{\frac{3}{2}}}{{\left (c d^{2} + a e^{2}\right )} \sqrt{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(c*x^4+a),x, algorithm="giac")

[Out]

1/2*((a*c^3)^(1/4)*c^2*d - (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(
2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) + 1/2*((a*c^3)^(1/4)*c^2*d - (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x - sq
rt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) + 1/4*((a*c^3)^(1/4)*c^2*d + (a*c^3)
^(3/4)*e)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) - 1/4*((a*c^3
)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2
*c^2*e^2) + arctan(x*e^(1/2)/sqrt(d))*e^(3/2)/((c*d^2 + a*e^2)*sqrt(d))